What is Photovoltaic or Solar cells? Working construction types advantages

Photovoltaic or Solar cells

Definition: The solar cell is a transducer or semiconductor which converts the suns radiant energy directly into electrical energy and is basically a semiconductor diode capable of developing a voltage of 0.5-1 volt and a current density of 20-40 mA/cm^2 depending upon the the material used and the conditions of sunlight.

The solar energy is directly converted into electrical energy by means of silicon wafer photovoltaic cells or solar cells. Solar cell operates on the principle of photovoltaic effect i.e. the process of generating an emf as a result of absorption of ionizing radiation.

Construction and working of photovoltaic cells

Photovoltaic effect can be observed in pure semiconductor such as silicon. In silicon there is no free charge carrier at ordinary temperature but if silicon is doped with phosphorous or arsenic then there will be one extra electron per atom of the impurity  leading to N-type semiconductor. similarly if another pieces of silicon is doped with boron there will be deficiency of electrons leading to P-type semiconductors. If these are connected by some means a junction at which the nature of the current carriers changes, is created. Thus the potential energy gap(Eg) is created at the junction.

when a photon of energy ‘hv’ is allowed to fall on the P-region it is absorbed by an electron in the valence bond. If ‘hv’ exceeds energy gap Eg, the electron will migrate to the N-region. Similarly if ‘hv’ is less than Eg in the N-region, the photon will be absorbed by a hole which will migrate to P-region. This charge separation creates an electric field opposite to the electric field created by the diffusion of free electrons of the N-region and the field created by the charge separation predominates the electric filed created by the diffusion of free electrons from N-region to P-region and holes from P-region to N-region current will start flowing in the circuit.

Photovoltaic module

One cell produces about 1.5 watt of power. Individual cells are connected together to form a solar panel or module, capable of developing 3 to 110 W power. Pannels are connected in series and parallel to make solar array which can produce any amount of wattage. Modules are usually designed to supply electricity at 12 V. Photovoltaic(PV) modules are rated by their peak watt output at solar noon on a clear day.

  • Series combination of Photovoltaic module: If more than two cells are connected in series with each other then the output current of the cell remains same and their output voltage becomes doubles.
  • Parallel combination of Photovoltaic module: If more than two cells are connected in parallel with each other then the output voltage¬† of the cell remains same and their output current becomes doubles.
  • Series-parallel combination of Photovoltaic module: If more than two cells are connected in series-parallel with each other then voltage and current increases.

Types of Solar Cells

According to the types of crystal the solar cells are of three types:

  1. Monocrystalline silicon solar cells
  2. Polycrystalline silicon solar cells
  3. Thin film or amorphous silicon solar cells

 

  1. Monocrystalline silicon solar cells: It is the silicon  doped with boron to produce P-type semiconductor. Monocrystalline rods are extracted from silicon and then sawed into thin plates or wafers. The upper layer of the wafers is doped with phosphorous to produce N-type semiconductor. The solar cells are formed into modules by enclosing in an airtight casing with a transparent cover of synthetic glass. These modules possess high efficiency between 15 and 18 % and are used in medium and large size plants.
  2. Polycrystalline silicon solar cells: Liquid silicon is poured into blocks that are sawed into plates. The silicon solar cells made from polycrystalline silicon are low cost but low efficiency. These modules possess high efficiency between 17-18%.
  3. Thin film or amorphous silicon solar cells: Silicon film deposited on glass or another substrate material. The efficiency of amorphous cells is much lower than that of other cells. They are primarily used in low power equipment’s such as watches, pocket calculators, etc. Thin film solar cells are also manufactured from gallium arsenide(GaAs),cadmium telliride (CdTe) and copper-indium-selenide(CUInSe).The maximum efficiency of this cell is 13%.

Advantages of Photovoltaic solar systems

  • Direct conversion of light to electricity at room temperature
  • voltage and power outputs can be manipulated by integration
  • Low maintenance cost
  • Pollution less
  • Longer life span
  • Highly reliable
  • solar energy is free and no fuel is required
  • can be started easily as no starting time is involved
  • Solar cells can be made from microwatts to megawatts so it can be used to feed the utility grid with power conditioning circuitry
  • Easy to fabricate
  • Has high power to weight ratio and can be used for space application
  • Noiseless and cheap system

Limitations of PV solar systems

  • Solar power plants need very large land areas.
  • Electrical generation cost is very high.
  • Low efficiency
  • initial cost of the plant is very high

Applications of solar photovoltaic systems

1.Autonomous system:

  • Amorphous silicon solar cells of very small capacity are employed in watches, pocket calculators etc.
  • Small capacity solar systems from 50 W to 50 KW capacity are used for remote houses and villages for lighting for domestic use, street lightning, telecommunications, community development, water pumping, etc.
  • Roof mounted solar system of 1 KW to 5 KW can be employed for residential houses.
  • It can be used for lightning, recreation centers, radios, TV sets, small refrigerators, drinking water supply, irrigation, vaccine refrigerator, milk chilling, rural power supply, parking lights, traffic signals, railway signaling etc.

2.Solar water pumps:

  • Used in water pumping for drinking water ,irrigation in rural areas, cattle stock watering.

3.Central Power Generation

4.Space Satellite Power Stations

For more notes on Electrical Engineering:

Related terms:

  1. What is n-type semiconductor?
  2. What is n-type semiconductor?
About Er.sushil Neupane 104 Articles
I am Sushil Neupane. I have completed my Bachelor degree in Electrical Engineering(EE) form Tribhuwan university(TU).Currently , I am working at Prabhu IPTV as a Network support Engineer form 2019.I am also engaged in Blogging since 2019.

1 Trackback / Pingback

  1. Oscillator | Definition | Operation | Barkhausen Criteria | Types | LC & RC

Leave a Reply

Your email address will not be published.


*